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ABSTRACT 
Let the sequence {X i} (i _--> 0) satisfy condition (1.1) and let {An} (n >_ 0) be a 
sequence of bounded self-adjoint operators over a complex Hilbert space H. 
We give a necessary and sufficient condition in order that {A n) (n _>-- 0) should 
possess the representation (1.2). 

1. Introduction. Let the sequence {2~} (i >= 0) satisfy the following conditions 

(1.1) 

1. 0 < 2 o < 2 2 < ' " < 2 , < " "  

2. l im 2.  = 
/ I  --} O0 

3. ~ 1 
1=1 ~'/ ~ OO 

We shall deal with the following problem: Let H be a complex Hilbert space 
and let {A,) (n > 0) be a sequence of self-adjoint operators in B(H).  What are 
the conditions, necessary and sufficient, on the sequence {A,) (n >___ 0) in order 
that it should possess the representation 

fO 
(1.2) A, = tX"dx(t) n = O, 1, 2 , . . .  

where X(t) is a nondecreasing function from [0,1] to B(H), that is ~(u)>> X(v) 

for 1 > u  > v > 0 .  
The case 2, = n for n > 0 was treated in the papers of Sz. Nagy [5, 6] and 

Mac Nerney [2]. 

2. Definitions. Let = l] a,,j II' 0, j 1, be 
numbers where a ,  = 1 for i = 0,1, 2 , . . . .  

Denote 

an infinite matrix of real 
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( i l , ' " , im) = 

air,1 , ..., all,m 

0 <= i1<"" < im 

aim,l, . . . ,  alm,m 

(if m = 1 (il) = ai,,1 = 1). We assume that (il, "", ira) >0  for every 0 < il < ' "  < i~,. 
Given a sequence of operators {An} (n > 0) define 

k 
(2.1) DkAi - Z ( - 1 ) J ( i , . . . , i + j - l , i + j +  l , . . . , i + k ) A ~ + j  

j = o  

(when k = 0, D~ = Ai) and 

(2.2) (O,m + 1, . . . ,p) DP_mA m 
2Pm - (m + 1, ...,p)(m, ...,p) 0 <  m < p = 0,1,2, . . .  

(when m = p, 2pp = ((0)/(p))Ap = A,). 
For every fixed p, assuming the 2pm are known, (2.2) are p + 1 linear equalities 

with p + 1 unknowns Ao, ' " ,  Ap. It is easily seen that the solution is 

p (n,m + l , . . . ,p )  
(2.3) An = ~ 2pm 

m=0 (0,m + 1,...,p) 

(when m = p the coefficient is ((n)/(0)) = 1). 
Denote 

(n ,m + 1,. . . ,p) 
Cnmp= (0, m --~ 1, . . . ,p)  

0_< n < p = 0,1,2,. . .  

0<n,= m < p = O ,  

(when m = p Cnpp = ((n)/(0))= 1) and 

tpm = Clm p 0 < m <-- p = O, 1, 2,. . .  

(when p = 0, Clo o = ((1)/(0)) = 1). 
The following results were proved by Shoenberg [4] 

a. 0 = t p o < t p l < . . . < t p p = l ,  
b. Let the points {(tpm , C n,mw)} (0 -< m _~< p,  p > n) be the vertices of a polygon 

p~P) and let p~P)(t), 0 <_ t _< 1, be the function describing that polygon. Then for 
each n, n = 0,1,2, ... the functions p~P)(t) tend, as p ~ oo, to a function ~bn(t) 
uniformly in 0 _< t < 1, 

c. Define as in (2.1) and (2.2) 

k 
(2.4) Dkqbi(t) = ~E ( -  1) 1 

j=O 
(i, . . . , i  + j - 1, i + j + 1, . . . , i  + k)~+j( t )  
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and 

(2.5) 
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... (0, m + 1,...,p) p).D p_mdA.(t), 
am(t) (m + 1,.. . ,p)(m,... ,  
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then 2pm(0 _~ 0 for 0 _< t _< 1 and 0 __< m 6 p = 0,1, 2,...  

3. Main results. For a given sequence {An} (n >_- 0) define an operator L on the 
space of all linear combinations of {~bn(t)} (n >_- 0) as follows: Let P(t) = ~,~= oa/pi(t ), 
then L{P(t)} = ~ = o  a~A,. 

THEOREM 1. Suppose that the linear combinations of {qbn(t)} (n > 0) are 
dense in C[0,1] in the sense of uniform convergence. Then the following three 
conditions are equivalent: 

1. Let {An} (n >_-0) be a sequence of self-adjoint operators and ;tpm defined 
by (2.2), then ~'pm >> O for 0 < m < p = 0, 1,2, ... 

a 2. For every P(t)= ~,i=o :~i(t) such that P(t) > O for O <<,t < l, we have 
L{P(t)} >2> O. 

3. There exists a nondecreasing function X(t)from [0,1] to B(H) such that 
An = f~o ~an(t)dx(t) n = O, 1,2,.... 

Proof. 1 4 2 :  Let P ( t ) =  ~'=oa:p~(t)>O for O < t < l ,  then for any x e H  

(LiP(t)}x, x) = ~ ai(Aix, x) 
i=O 

by (2.3) for every p > n 

by the definition of p~ p) (t) 

P 

= ~, as X p[P)(tpm)(2pmX, X) 
m=O 

as 7.. Cimp(2p,.X,X) 
i = 0  m = 0  

i = 0  

P P 

= ~. a, X r  ~e a, 
i = 0  m = 0  i = 0  m = 0  

X [P(')(t. .)  - q,,(t,,m)] (,1.,.x,x) 

- I I  + 1 2  

P Now 11 = ~,,,=o[~,.~=oaJ?i(tp=)](J.p,,X,X)= ~,~=oP(tp=)(2pmX, X), hence 11 > 0. 
Since P[P)(t).-* d?i(t ) uniformly in 0 < t < 1 and (J.p,,x, x) > 0 for 0 < m < p = 0,1,2,... 
we have for p _>- Po: 

by (2.3) 

[ ] ( '  ) f- la, I x 
/ = 0  m = 0  

ffi 8K(Aox,  x) "+ 0 a s  8 --+ 0 .  
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Hence L{P(t)} >> O. 
2 --, 3: It is proved easily in a way similar to the proof  of the spectral decom- 

position of bounded operators. For instance see [2] Lemma 9. 
3--,1: We have 2pm=f~2pm(t)dx(t)>> 0 since x(t) is nondecreasing and 

2rm(t ) -_ 0. Q.E.D. 

CONSEQUENCE 1: Suppose that the linear combinations of  {~b,(0} (n>  0) 
are dense in C[0,1] in the sense of uniform convergence. Then the following 
two conditions are equivalent: 

1. Let {A,} (n > 0) be a sequence of self-adjoint operators such that Ao = ! 
and 2pro defined by (2.2), then 2pro >> 0 for 0 < m < p = 0, 1,2, . . . .  

2. There exists a self-adjoint operator A in an extension space H such that 
An = pr dp,(A) n = O, 1, 2, . . . .  

Proof. By Theorem 1 condition 1 is equivalent to the existence of a generalized 
spectral family {X(t)}, (we may take x(t) = 0 for t < 0 and Z(t) = I for t > 1), 
such that A, = f~ r n = 0,1,2, . . . .  Hence by Sz. Nagy [5] this is equi- 
valent to the existence of  A = f~tdE(t) such that X( t )=prE( t )  for 0 < t < l .  

Q.E.D. 

Let the matrix 9.I be an infinite Vandermonde defined by {21} (i > 0) which 
satisfies (1.1), that is 9~= II aij ]1 where a i j=  2, J - , l i~  0 , j  >= 1. Given the sequence 
{A,} (n > 0) we have 

(3.1) 2p,, = ( -  1)P-m2m+x . . . . .  2p 

P 1 
E Ai 

i:m (~Li -- 2m) . . . . .  ( '~ i -  2i-- 1)(~i -- 2/+I)  . . . . .  (~ i - )~p)  

- ( -  1)v-m2m+X . . . . .  2p [A,,, "",Ap] 

CONSEQUENCE 2 : Let {2i} (i > 0) satisfy (1.1) with ;t o = 0, then ( - 1) p -"JAm,... ,Av] 
>> 0 for 0 < m < p = 0,1,2, ... if, and only if there exists a nondecreasing function 
g(t) from [0,1] to B(H) such that A, = f~ta,dx(t) n = 0 , 1 , 2 , . . . .  I f  we have 
also Ao = I, then there exists a self adjoint operator A in an extension space H 
such that A, = prA a" n = 0,1,2, . . . .  

Proof. For {2i} (i > 0) satisfying (1.i) with 20 = 0 we have d?,(O = t ~"1~1 

n = 0, 1, 2, ... and the linear combinations of {~bn(t)} (n ~ 0) are dense in 
C[0,1] in the sense of uniform convergence (see [4]). Hence by Theorem 1 
( - 1) p-"[A.,, ..., Ap] ~> 0 for 0 < m _< p = 0,1, 2,... if, and only if there exists 
a nondecreasing function $(t) from [0,1] to B(H) such that 

fo 
A, = t~"la' d$(t) n = O, 1, 2 , . . . .  
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Define s = t 1/~1 and X(s) = ~(t), then A, = J'o 1 s~"dx(s) n = O, 1, 2, . . . .  
The second part is proved as in consequence 1. Q.E.D. 

Th'EOREM 2. Let {Ai} (i >= O) satisfy (1.1) with 2 o > 0. Then there exists a 
nondecreasing function x(t) from [0,1] to B(H) such that Z ( 1 ) -  x(O)= I and 

(3.2) 

if, and only if: 

A,  = fo it a"dz(t) n = 0,1,2, . , .  

(3.3) 

1. For 0 _<__ m < p = O, 1, 2,... ( - 1) p-"[Am,...,Ap] ~ O. 

2. For p > O  ( -1)V2o . . . . .  2 v A o , ' " , q - A  v ,~I. 

Proof. Define sequences {•}, {)~,} (n => 0) by 

. ~ o = I  L =  A,_I n > l .  

~ .o=0 ~., = 2,-1 n > l .  

By (3.1) we have by an easy calculation (see [1]) 

= 

and 

JAm-l ,  " ' ,Ap-1]  for 1 < m < p = 1,2, ... 

1 Av_I ] 
2o ' "2p-1  ' 2v-1 " 

From (3.3) ( - 1) p-m [A,,, ...,Ap] >> 0, hence by Consequence 2 

A, = tX"dx(t) n=O,  1,2,.. . ,  that is  

fo A, = t a"dx(t) n = 0,1,2,- .- .  

On the other hand, by (3.2) ~,  = fo 1 t~"dx(t) n = 0,1,2, .-., hence by Con- 
sequence 2, ( - 1 ) P - " [ A , , , . . . , A p ] > > 0  for 0 < r e < p = 0 , 1 , 2 , . . . ,  that is (3.3) 
holds. Q.E.D. 

CO~SEQtmNCE 3: Condition (3.3) holds if, and only if there exists a self-adjoint 
operator A in an extension space H such that A, = prA x" n = 0 ,1 ,2 , . . . .  
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